Publications

2015
Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161 (5) :1187-201.Abstract
It has long been the dream of biologists to map gene expression at the single-cell level. With such data one might track heterogeneous cell sub-populations, and infer regulatory relationships between genes and pathways. Recently, RNA sequencing has achieved single-cell resolution. What is limiting is an effective way to routinely isolate and process large numbers of individual cells for quantitative in-depth sequencing. We have developed a high-throughput droplet-microfluidic approach for barcoding the RNA from thousands of individual cells for subsequent analysis by next-generation sequencing. The method shows a surprisingly low noise profile and is readily adaptable to other sequencing-based assays. We analyzed mouse embryonic stem cells, revealing in detail the population structure and the heterogeneous onset of differentiation after leukemia inhibitory factor (LIF) withdrawal. The reproducibility of these high-throughput single-cell data allowed us to deconstruct cell populations and infer gene expression relationships. VIDEO ABSTRACT.
2014
Kronen MR, Schoenfelder KP, Klein AM, Nystul TG. Basolateral junction proteins regulate competition for the follicle stem cell niche in the Drosophila ovary. PLoS One. 2014;9 (7) :e101085.Abstract
Epithelial stem cells are routinely lost or damaged during adult life and must therefore be replaced to maintain homeostasis. Recent studies indicate that stem cell replacement occurs through neutral competition in many types of epithelial tissues, but little is known about the factors that determine competitive outcome. The epithelial follicle stem cells (FSCs) in the Drosophila ovary are regularly lost and replaced during normal homeostasis, and we show that FSC replacement conforms to a model of neutral competition. In addition, we found that FSCs mutant for the basolateral junction genes, lethal giant larvae (lgl) or discs large (dlg), undergo a biased competition for niche occupancy characterized by increased invasion of neighboring FSCs and reduced loss. Interestingly, FSCs mutant for a third basolateral junction gene, scribble (scrib), do not exhibit biased competition, suggesting that Lgl and Dlg regulate niche competition through a Scrib-independent process. Lastly, we found that FSCs have a unique cell polarity characterized by broadly distributed adherens junctions and the lack of a mature apical domain. Collectively, these observations indicate that Lgl and Dlg promote the differentiation of FSC progeny to a state in which they are less prone to invade the neighboring niche. In addition, we demonstrate that the neutral drift model can be adapted to quantify non-neutral behavior of mutant clones.
2013
Lim X, Tan SH, Koh WLC, Chau RMW, Yan KS, Kuo CJ, van Amerongen R, Klein AM, Nusse R. Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling. Science. 2013;342 (6163) :1226-30.Abstract
The skin is a classical example of a tissue maintained by stem cells. However, the identity of the stem cells that maintain the interfollicular epidermis and the source of the signals that control their activity remain unclear. Using mouse lineage tracing and quantitative clonal analyses, we showed that the Wnt target gene Axin2 marks interfollicular epidermal stem cells. These Axin2-expressing cells constitute the majority of the basal epidermal layer, compete neutrally, and require Wnt/β-catenin signaling to proliferate. The same cells contribute robustly to wound healing, with no requirement for a quiescent stem cell subpopulation. By means of double-labeling RNA in situ hybridization in mice, we showed that the Axin2-expressing cells themselves produce Wnt signals as well as long-range secreted Wnt inhibitors, suggesting an autocrine mechanism of stem cell self-renewal.
2012
Doupé DP, Alcolea MP, Roshan A, Zhang G, Klein AM, Simons BD, Jones PH. A single progenitor population switches behavior to maintain and repair esophageal epithelium. Science. 2012;337 (6098) :1091-3.Abstract
Diseases of the esophageal epithelium (EE), such as reflux esophagitis and cancer, are rising in incidence. Despite this, the cellular behaviors underlying EE homeostasis and repair remain controversial. Here, we show that in mice, EE is maintained by a single population of cells that divide stochastically to generate proliferating and differentiating daughters with equal probability. In response to challenge with all-trans retinoic acid (atRA), the balance of daughter cell fate is unaltered, but the rate of cell division increases. However, after wounding, cells reversibly switch to producing an excess of proliferating daughters until the wound has closed. Such fate-switching enables a single progenitor population to both maintain and repair tissue without the need for a "reserve" slow-cycling stem cell pool.
Hernández AR, Klein AM, Kirschner MW. Kinetic responses of β-catenin specify the sites of Wnt control. Science. 2012;338 (6112) :1337-40.Abstract
Despite more than 30 years of work on the Wnt signaling pathway, the basic mechanism of how the extracellular Wnt signal increases the intracellular concentration of β-catenin is still contentious. Circumventing much of the detailed biochemistry, we used basic principles of chemical kinetics coupled with quantitative measurements to define the reactions on β-catenin directly affected by the Wnt signal. We conclude that the core signal transduction mechanism is relatively simple, with only two regulated phosphorylation steps. Their partial inhibition gives rise to the full dynamics of the response and subsequently maintains a steady state in which the concentration of β-catenin is increased.
2011
Waks Z, Klein AM, Silver PA. Cell-to-cell variability of alternative RNA splicing. Mol Syst Biol. 2011;7 :506.Abstract
Heterogeneity in the expression levels of mammalian genes is large even in clonal populations and has phenotypic consequences. Alternative splicing is a fundamental aspect of gene expression, yet its contribution to heterogeneity is unknown. Here, we use single-molecule imaging to characterize the cell-to-cell variability in mRNA isoform ratios for two endogenous genes, CAPRIN1 and MKNK2. We show that isoform variability in non-transformed, diploid cells is remarkably close to the minimum possible given the stochastic nature of individual splicing events, while variability in HeLa cells is considerably higher. Analysis of the potential sources of isoform ratio heterogeneity indicates that a difference in the control over splicing factor activity is one origin of this increase. Our imaging approach also visualizes non-alternatively spliced mRNA and active transcription sites, and yields spatial information regarding the relationship between splicing and transcription. Together, our work demonstrates that mammalian cells minimize fluctuations in mRNA isoform ratios by tightly regulating the splicing machinery.
Klein AM, Lande-Diner L. The critical discussion group: fostering personal and scientific growth. Mol Cell. 2011;44 (2) :167-9.Abstract
As scientists, we greatly benefit from discussing our work with our peers. Informal, unstructured interactions often yield highly creative feedback. With this in mind, we created a group that fosters discussion of its members' work. The group engages us in new research fields and ways of thinking, and provides us with an opportunity for co-mentoring. Three key components were essential for making this group work: the emphasis on non-hierarchical debate; the diversity of the group members; and the mutual respect existing among the participants.
Magenheim J, Klein AM, Stanger BZ, Ashery-Padan R, Sosa-Pineda B, Gu G, Dor Y. Ngn3(+) endocrine progenitor cells control the fate and morphogenesis of pancreatic ductal epithelium. Dev Biol. 2011;359 (1) :26-36.Abstract
During pancreas development, endocrine and exocrine cells arise from a common multipotent progenitor pool. How these cell fate decisions are coordinated with tissue morphogenesis is poorly understood. Here we have examined ductal morphology, endocrine progenitor cell fate and Notch signaling in Ngn3(-/-) mice, which do not produce islet cells. Ngn3 deficiency results in reduced branching and enlarged pancreatic duct-like structures, concomitant with Ngn3 promoter activation throughout the ductal epithelium and reduced Notch signaling. Conversely, forced generation of surplus endocrine progenitor cells causes reduced duct caliber and an excessive number of tip cells. Thus, endocrine progenitor cells normally provide a feedback signal to adjacent multipotent ductal progenitor cells that activates Notch signaling, inhibits further endocrine differentiation and promotes proper morphogenesis. These results uncover a novel layer of regulation coordinating pancreas morphogenesis and endocrine/exocrine differentiation, and suggest ways to enhance the yield of beta cells from stem cells.
Klein AM, Nikolaidou-Neokosmidou V, Doupé DP, Jones PH, Simons BD. Patterning as a signature of human epidermal stem cell regulation. J R Soc Interface. 2011;8 (65) :1815-24.Abstract
Understanding how stem cells are regulated in adult tissues is a major challenge in cell biology. In the basal layer of human epidermis, clusters of almost quiescent stem cells are interspersed with proliferating and differentiating cells. Previous studies have shown that the proliferating cells follow a pattern of balanced stochastic cell fate. This behaviour enables them to maintain homeostasis, while stem cells remain confined to their quiescent clusters. Intriguingly, these clusters reappear spontaneously in culture, suggesting that they may play a functional role in stem cell auto-regulation. We propose a model of pattern formation that explains how clustering could regulate stem cell activity in homeostatic tissue through contact inhibition and stem cell aggregation.
Klein AM, Simons BD. Universal patterns of stem cell fate in cycling adult tissues. Development. 2011;138 (15) :3103-11.Abstract
In cycling tissues that exhibit high turnover, tissue maintenance and repair are coordinated by stem cells. But, how frequently stem cells are replaced following differentiation, aging or injury remains unclear. By drawing together the results of recent lineage-tracing studies, we propose that tissue stem cells are routinely lost and replaced in a stochastic manner. We show that stem cell replacement leads to neutral competition between clones, resulting in two characteristic and recurring patterns of clone fate dynamics, which provide a unifying framework for interpreting clone fate data and for measuring rates of stem cell loss and replacement in vivo. Thus, we challenge the concept of the stem cell as an immortal, slow-cycling, asymmetrically dividing cell.
2010
Klein AM, Brash DE, Jones PH, Simons BD. Stochastic fate of p53-mutant epidermal progenitor cells is tilted toward proliferation by UV B during preneoplasia. Proc Natl Acad Sci U S A. 2010;107 (1) :270-5.Abstract
UV B (UVB) radiation induces clones of cells mutant for the p53 tumor suppressor gene in human and murine epidermis. Here we reanalyze large datasets that report the fate of clones in mice subjected to a course of UVB radiation, to uncover how p53 mutation affects epidermal progenitor cell behavior. We show that p53 mutation leads to exponential growth of clones in UV-irradiated epidermis; this finding is also consistent with the size distribution of p53 mutant clones in human epidermis. Analysis of the tail of the size distribution further reveals that the fate of individual mutant cells is stochastic. Finally, the data suggest that ending UVB exposure results in the p53 mutant cells adopting the balanced fate of wild-type cells: the loss of mutant cells is balanced by proliferation so that the population of preneoplastic cells remains constant. We conclude that preneoplastic clones do not derive from long-lived, self-renewing mutant stem cells but rather from mutant progenitors with random cell fate. It follows that ongoing, low-intensity UVB radiation will increase the number of precancerous cells dramatically compared with sporadic, higher-intensity exposure at the same cumulative dose, which may explain why nonmelanoma skin cancer incidence depends more strongly on age than on radiation dosage. Our approach may be applied to determine cell growth rates in clonally labeled material from a wide range of tissues including human samples.
Salpeter SJ, Klein AM, Huangfu D, Grimsby J, Dor Y. Glucose and aging control the quiescence period that follows pancreatic beta cell replication. Development. 2010;137 (19) :3205-13.Abstract
Pancreatic beta cell proliferation has emerged as the principal mechanism for homeostatic maintenance of beta cell mass during adult life. This underscores the importance of understanding the mechanisms of beta cell replication and suggests novel approaches for regenerative therapy to treat diabetes. Here we use an in vivo pulse-chase labeling assay to investigate the replication dynamics of adult mouse beta cells. We find that replicated beta cells are able to re-enter the cell division cycle shortly after mitosis and regain their normal proliferative potential after a short quiescence period of several days. This quiescence period is lengthened with advanced age, but shortened during injury-driven beta cell regeneration and following treatment with a pharmacological activator of glucokinase, providing strong evidence that metabolic demand is a key determinant of cell cycle re-entry. Lastly, we show that cyclin D2, a crucial factor in beta cell replication, is downregulated during cell division, and is slowly upregulated post-mitosis by a glucose-sensitive mechanism. These results demonstrate that beta cells quickly regain their capacity to re-enter the cell cycle post-mitosis and implicate glucose control of cyclin D2 expression in the regulation of this process.
Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, Barker N, Klein AM, van Rheenen J, Simons BD, et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell. 2010;143 (1) :134-44.Abstract
Intestinal stem cells, characterized by high Lgr5 expression, reside between Paneth cells at the small intestinal crypt base and divide every day. We have carried out fate mapping of individual stem cells by generating a multicolor Cre-reporter. As a population, Lgr5(hi) stem cells persist life-long, yet crypts drift toward clonality within a period of 1-6 months. We have collected short- and long-term clonal tracing data of individual Lgr5(hi) cells. These reveal that most Lgr5(hi) cell divisions occur symmetrically and do not support a model in which two daughter cells resulting from an Lgr5(hi) cell division adopt divergent fates (i.e., one Lgr5(hi) cell and one transit-amplifying [TA] cell per division). The cellular dynamics are consistent with a model in which the resident stem cells double their numbers each day and stochastically adopt stem or TA fates. Quantitative analysis shows that stem cell turnover follows a pattern of neutral drift dynamics.
Lopez-Garcia C, Klein AM, Simons BD, Winton DJ. Intestinal stem cell replacement follows a pattern of neutral drift. Science. 2010;330 (6005) :822-5.Abstract
With the capacity for rapid self-renewal and regeneration, the intestinal epithelium is stereotypical of stem cell-supported tissues. Yet the pattern of stem cell turnover remains in question. Applying analytical methods from population dynamics and statistical physics to an inducible genetic labeling system, we showed that clone size distributions conform to a distinctive scaling behavior at short times. This result demonstrates that intestinal stem cells form an equipotent population in which the loss of a stem cell is compensated by the multiplication of a neighbor, leading to neutral drift dynamics in which clones expand and contract at random until they either take over the crypt or they are lost. Combined with long-term clonal fate data, we show that the rate of stem cell replacement is comparable to the cell division rate, implying that neutral drift and symmetrical cell divisions are central to stem cell homeostasis.
Klein AM, Nakagawa T, Ichikawa R, Yoshida S, Simons BD. Mouse germ line stem cells undergo rapid and stochastic turnover. Cell Stem Cell. 2010;7 (2) :214-24.Abstract
In cycling tissues, adult stem cells may be lost and subsequently replaced to ensure homeostasis. To examine the frequency of stem cell replacement, we analyzed the population dynamics of labeled stem cells in steady-state mouse spermatogenesis. Our results show that spermatogenic stem cells are continuously replaced, on average within 2 weeks. The analysis exposes a simple and robust scaling behavior of clone size distributions that shows stem cell replacement to be stochastic, meaning that stem cells are equipotent and equally likely to be lost or to multiply to replace their neighbors, irrespective of their clonal history. The surprisingly fast rate of stem cell replacement is supported experimentally by 3D clone morphology and by live-imaging of spermatogonial migration. These results suggest that short-lived stem cells may be a common feature of mammalian stem cell systems and reveal a natural mechanism for matching the rates of cell proliferation and loss in tissue.
Doupé DP, Klein AM, Simons BD, Jones PH. The ordered architecture of murine ear epidermis is maintained by progenitor cells with random fate. Dev Cell. 2010;18 (2) :317-23.Abstract
Typical murine epidermis has a patterned structure, seen clearly in ear skin, with regular columns of differentiated cells overlying the proliferative basal layer. It has been proposed that each column is a clonal epidermal proliferative unit maintained by a central stem cell and its transit amplifying cell progeny. An alternative hypothesis is that proliferating basal cells have random fate, the probability of generating cycling or differentiated cells being balanced so homeostasis is achieved. The stochastic model seems irreconcilable with an ordered tissue. Here we use lineage tracing to reveal that basal cells generate clones with highly irregular shapes that contribute progeny to multiple columns. Basal cell fate and cell cycle time is random. Cell columns form due to the properties of postmitotic cells. We conclude that the ordered architecture of the epidermis is maintained by a stochastic progenitor cell population, providing a simple and robust mechanism of homeostasis.
2008
Klein AM, Doupé DP, Jones PH, Simons BD. Mechanism of murine epidermal maintenance: cell division and the voter model. Phys Rev E Stat Nonlin Soft Matter Phys. 2008;77 (3 Pt 1) :031907.Abstract
The dynamics of a genetically labeled cell population may be used to infer the laws of cell division in mammalian tissue. Recently, we showed that in mouse tail skin, where proliferating cells are confined to a two-dimensional layer, cells proliferate and differentiate according to a simple stochastic model of cell division involving just one type of proliferating cell that may divide both symmetrically and asymmetrically. Curiously, these simple rules provide excellent predictions of the cell population dynamics without having to address the cells' spatial distribution. Yet, if the spatial behavior of cells is addressed by allowing cells to diffuse at random, one deduces that density fluctuations destroy tissue confluence, implying some hidden degree of spatial regulation of cell division. To infer the mechanism of spatial regulation, we consider a two-dimensional model of cell fate that preserves the overall population dynamics. By identifying the resulting behavior with a three-species variation of the voter model, we predict that proliferating cells in the basal layer should cluster. Analysis of empirical correlations of cells stained for proliferation activity confirms that the expected clustering behavior is indeed seen in nature. As well as explaining how cells maintain a uniform two-dimensional density, these findings present an interesting experimental example of voter-model statistics in biology.
2007
Klein AM, Doupé DP, Jones PH, Simons BD. Kinetics of cell division in epidermal maintenance. Phys Rev E Stat Nonlin Soft Matter Phys. 2007;76 (2 Pt 1) :021910.Abstract
The rules governing cell division and differentiation are central to understanding the mechanisms of development, aging, and cancer. By utilizing inducible genetic labeling, recent studies have shown that the clonal population in transgenic mouse epidermis can be tracked in vivo. Drawing on these results, we explain how clonal fate data may be used to infer the rules of cell division and differentiation underlying the maintenance of adult murine tail-skin. We show that the rates of cell division and differentiation may be evaluated by considering the long-time and short-time clone fate data, and that the data is consistent with cells dividing independently rather than synchronously. Motivated by these findings, we consider a mechanism for cancer onset based closely on the model for normal adult skin. By analyzing the expected changes to clonal fate in cancer emerging from a simple two-stage mutation, we propose that clonal fate data may provide a novel method for studying the earliest stages of the disease.
Clayton E, Doupé DP, Klein AM, Winton DJ, Simons BD, Jones PH. A single type of progenitor cell maintains normal epidermis. Nature. 2007;446 (7132) :185-9.Abstract
According to the current model of adult epidermal homeostasis, skin tissue is maintained by two discrete populations of progenitor cells: self-renewing stem cells; and their progeny, known as transit amplifying cells, which differentiate after several rounds of cell division. By making use of inducible genetic labelling, we have tracked the fate of a representative sample of progenitor cells in mouse tail epidermis at single-cell resolution in vivo at time intervals up to one year. Here we show that clone-size distributions are consistent with a new model of homeostasis involving only one type of progenitor cell. These cells are found to undergo both symmetric and asymmetric division at rates that ensure epidermal homeostasis. The results raise important questions about the potential role of stem cells on tissue maintenance in vivo.